WEEKLY TEST MEDICAL PLUS -02 TEST - 05 RAJ PUR SOLUTION Date 21-07-2019

[PHYSICS]

1.
2. $\quad \mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} ; \quad \therefore$ unit of $\varepsilon_{0}=\frac{\left(\text { coulomb }{ }^{2}\right)}{\left(\text { newton }-\mathrm{m}^{2}\right.}$
3. Here, $\frac{2 \pi}{\lambda}(c t-x)$ is dimensionless. Hence, $\frac{c t}{\lambda}$ is also dimensionless and unit of ct is same as that of x.

Therefore, unit of λ is same as that of x. Also unit of y is same as that of A, which is also the unit of x.
4. We know that the units of physical quantities which can be expressed in terms of fundamental units are called derived units. Mass, length and time are fundamental units but volume is a derived unit (as $V=L^{3}$)
6. $\quad \mathrm{CR}=\frac{\mathrm{q}}{\mathrm{V}} \times \frac{\mathrm{V}}{\mathrm{l}}=\frac{\mathrm{q}}{\mathrm{q} / \mathrm{t}}=\mathrm{t}$
$[\mathrm{CR}]=[\mathrm{T}]\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}\right]$
$[\mathrm{a}]=\left[\mathrm{PV}^{2}\right]$
$=\left[\frac{\mathrm{FV}^{2}}{\mathrm{~A}}\right]=\frac{\left[\mathrm{ML}^{-2} \mathrm{~T}^{6}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{MLT}^{5-2}\right]$
8.
$\mathrm{E}=\mathrm{hv}$ or $[\mathrm{h}]=\left[\frac{\mathrm{E}}{\mathrm{v}}\right]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
9. We know that dimension of velocity of light $[\mathrm{c}]=\left[\mathrm{M}^{0} \mathrm{LT}^{-1}\right]$; dimension of gravitational constant $[\mathrm{G}]=\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-}\right.$ $\left.{ }^{2}\right]$ and dimension of Planck's constant $[\mathrm{h}]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$. Solving the above three equations, we get; $[\mathrm{M}]=\left[\mathrm{c}^{1 /}\right.$ ${ }^{2} \mathrm{G}^{-1 / 2} \mathrm{~h}^{1 / 2}$.
12. $\frac{\Delta V}{\mathrm{~V}}=3 \times \frac{\Delta \mathrm{r}}{\mathrm{r}}=3 \times \frac{1}{100}=\frac{3}{100}=3 \%$
13. Given length $(\ell)=3.124 \mathrm{~m}$ and breadth $(\mathrm{b})=3.002 \mathrm{~m}$. We know that area of the sheet $(A)=\ell \times b=3.124 \times$ $3.002=9.378248 \mathrm{~m}^{2}$. Since, both length and breadth have four significant figures, therefore area of the sheet after rounding off to four significant is $9.378 \mathrm{~m}^{2}$.
14. $\frac{[\mathrm{h}]}{[1]}=\frac{[\mathrm{E} \lambda]}{[\mathrm{Cl}]}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right][\mathrm{L}]}{\left[\mathrm{LT}^{-1}\right]\left[\mathrm{ML}^{2}\right]}$
$=\left[\mathrm{T}^{-1}\right]=$ [frequency].
15. Unit of energy $=[F]^{x}[A]^{y}[T]^{2}$
$[\mathrm{M}]^{1}[\mathrm{~L}]^{2}[\mathrm{~T}]^{-2}=\left[\mathrm{MLT}^{-2}\right]^{\mathrm{x}}\left[\mathrm{M}^{0} \mathrm{LT}^{-2}\right]^{\mathrm{y}}\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}\right]^{2}$
or $\quad[\mathrm{M}]^{1}[\mathrm{~L}]^{2}[T]^{-2}=\mathrm{M}^{\times} \mathrm{L}^{\mathrm{x}+\mathrm{y}} \mathrm{T}^{-2 x-2 y+z}$
For equality,
$x=1, x+y=2$ or $y=1$
$-2 x-2 y+z=-2$ or $z=2$
$\therefore \quad$ Unit of energy $=[F]^{1}[A]^{1}[T]^{2}$
16. $\mathrm{P}=\frac{\sqrt{\mathrm{abc}^{2}}}{\mathrm{~d}^{3} \mathrm{e}^{1 / 3}}$
$=\frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100$
$=\left[\frac{1}{2} \times \frac{\Delta \mathrm{a}}{\mathrm{a}}+\frac{1}{2} \times \frac{\Delta \mathrm{b}}{\mathrm{b}}+\frac{\Delta \mathrm{c}}{\mathrm{c}}+3 \times \frac{\Delta \mathrm{d}}{\mathrm{d}}+\frac{1}{3} \times \frac{\Delta \mathrm{e}}{\mathrm{e}}\right] \times 100$
$=\left[\frac{1}{2} \times 2 \%+\frac{1}{2} \times 3 \%+2 \%+3 \times \%+\frac{1}{3} \times 6 \%\right]$
$=[1 \%+1.5 \%+2 \%+3 \%+2 \%]$
The minimum amount of error is contributed by the measurement of a.
17. $y=\frac{a^{4} b^{2}}{\left(c d^{4}\right)^{1 / 3}}$

Taking log on both sides,
$\log y=4 \log a+2 \log b-\frac{1}{3} \log c-\frac{4}{3} \log d$
Differentiating,
$\frac{\Delta y}{y}=4 \frac{\Delta a}{a}+2 \frac{\Delta b}{b}-\frac{1}{3} \frac{\Delta c}{c}-\frac{4}{3} \frac{\Delta d}{d}$
Percentage error in y ,
$\frac{\Delta y}{y} \times 100=4\left(\frac{\Delta a}{a} \times 100\right)+2\left(\frac{\Delta b}{b} \times 100\right)+\frac{1}{3}\left(\frac{\Delta c}{c} \times 100\right)+\frac{4}{3}\left(\frac{\Delta d}{d} \times 100\right)$
$=\left[4 \times 2 \%+2 \times 3 \%+\frac{1}{3} \times 4 \%+\frac{4}{3} \times \%\right]=22 \%$
18. $\mathrm{E}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right], \mathrm{G}=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right], \mathrm{I}=\left[\mathrm{MLT}^{-1}\right]$ and $\mathrm{M}=[\mathrm{M}]$
\therefore Dimensions of $\frac{\mathrm{GIM}^{2}}{\mathrm{E}^{2}}$
$=\frac{\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\left[\mathrm{MLT}^{-1}\right]\left[\mathrm{M}^{2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}=[\mathrm{T}]$
19. Let $v \propto \sigma^{a} \rho^{b} \lambda^{c}$

Equation dimensions on both sides,
$\left[M^{0} L^{1} \mathrm{~T}^{-1}\right] \propto\left[\mathrm{MT}^{-2}\right]^{a}\left[\mathrm{ML}^{-3}\right]^{\mathrm{b}}[\mathrm{L}]^{\mathrm{c}}$
$\propto[M]^{a+b}[L]^{-3 b+c}[T]^{-2 a}$
Equation the powers of $\mathrm{M}, \mathrm{L}, \mathrm{T}$ on the both sides, we get;
$a+b=0$
$-3 b+c=1$
$-2 a=-1$
Solving, we get;
$a=\frac{1}{2}, b=-\frac{1}{2}, c=-\frac{1}{2}$
$\therefore \quad \mathrm{V} \propto \sigma^{1 / 2} \rho^{-1 / 2} \lambda^{-1 / 2}$
$\therefore \quad \mathrm{v}^{2} \propto \frac{\sigma}{\rho \lambda}$
20. $1 / 8$ th of the circumference $=\frac{360^{\circ}}{8}=45^{\circ}$

Change in velocity, $\sqrt{v^{2}+v^{2}-2 v^{2} \cos 45^{\circ}}=0.765 v$

AVIRAL CLASSES

creating scholars
23. $[$ Energy density $]=\left[\frac{\text { Work done }}{\text { Volume }}\right]=\frac{\left[\mathrm{MLT}^{-2} . \mathrm{L}\right]}{\left[\mathrm{L}^{3}\right]}$
[Young's modulus $]=[\mathrm{Y}]=\left[\frac{\text { Force }}{\text { Area }}\right] \times \frac{[\ell]}{\Delta \ell}$
$=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]} \cdot \frac{[\mathrm{L}]}{[\mathrm{L}]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
The dimensions of 1 and 4 are the same.
26. (a) $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \quad \therefore r=\sqrt{x^{2}+y^{2}+z^{2}}$ $r=\sqrt{6^{2}+8^{2}+10^{2}}=10 \sqrt{2} \mathrm{~m}$
27. (a) $\vec{r}=20 \hat{i}+10 \hat{j} \quad \therefore r=\sqrt{20^{2}+10^{2}}=22.5 \mathrm{~m}$
28. (c) From figure, $\overrightarrow{O A}=0 \vec{i}+30 \vec{j}, \overrightarrow{A B}=20 \vec{i}+0 \vec{j}$

$\overrightarrow{B C}=-30 \sqrt{2} \cos 45^{\circ} \dot{i}-30 \sqrt{2} \sin 45^{\circ} \vec{j}=-30 \vec{i}-30 \vec{j}$
\therefore Net displacement, $\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A B}+\overrightarrow{B C}=-10 \vec{i}+0 \vec{j}$

$$
|\overrightarrow{O C}|=10 \mathrm{~m}
$$

29. (a) An aeroplane flies 400 m north and 300 m south so the net displacement is 100 m towards north.

Then it flies $1200 m$ upward so $r=\sqrt{(100)^{2}+(1200)^{2}}$

$$
=1204 \mathrm{~m} \simeq 1200 \mathrm{~m}
$$

The option should be 1204 m , because this value mislead one into thinking that net displacement is in upward direction only.
30. (b) Total time of motion is $2 \mathrm{~min} 20 \mathrm{sec}=140 \mathrm{sec}$.

As time period of circular motion is 40 sec so in 140 sec . athlete will complete 3.5 revolution i.e., He will be at diametrically opposite point i.e., Displacement $=2 R$.
31. (c) Horizontal distance covered by the wheel in half revolution $=\pi R$.

So the displacement of the point which was initially in contact with ground $=A A^{\prime}=\sqrt{(\pi R)^{2}+(2 R)^{2}}$
$=R \sqrt{\pi^{2}+4}=\sqrt{\pi^{2}+4}$ (As $R=1 m$)
32. (d) As the total distance is divided into two equal parts therefore distance averaged speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
33.
(d) $\frac{v_{A}}{v_{B}}=\frac{\tan \theta_{A}}{\tan \theta_{B}}=\frac{\tan 30^{\circ}}{\tan 60^{\circ}}=\frac{1 / \sqrt{3}}{\sqrt{3}}=\frac{1}{3}$
34.
(b) Distance average speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}=\frac{2 \times 20 \times 30}{20+30}$
$=\frac{120}{5}=24 \mathrm{~km} / \mathrm{hr}$
35. (b) Distance average speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}=\frac{2 \times 2.5 \times 4}{2.5+4}$
$=\frac{200}{65}=\frac{40}{13} \mathrm{~km} / \mathrm{hr}$
36. (c) Distance average speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}=\frac{2 \times 30 \times 50}{30+50}$
$=\frac{75}{2}=37.5 \mathrm{~km} / \mathrm{hr}$
37. (d) Average speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{x}{t_{1}+t_{2}}$
$=\frac{x}{\frac{x / 3}{v_{1}}+\frac{2 x / 3}{v_{2}}}=\frac{1}{\frac{1}{3 \times 20}+\frac{2}{3 \times 60}}=36 \mathrm{~km} / \mathrm{hr}$
38. (a) Time average speed $=\frac{v_{1}+v_{2}}{2}=\frac{80+40}{2}=60 \mathrm{~km} / \mathrm{hr}$.
39. (b) Distance travelled by train in first 1 hour is 60 km and distance in next $1 / 2$ hour is 20 km .

So Average speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{60+20}{3 / 2}$
$=53.33 \mathrm{~km} /$ hour
40. D
41. (c) Total distance to be covered for crossing the bridge
$=$ length of train + length of bridge
$=150 \mathrm{~m}+850 \mathrm{~m}=1000 \mathrm{~m}$
Time $=\frac{\text { Distance }}{\text { Velocity }}=\frac{1000}{45 \times \frac{5}{18}}=80 \mathrm{sec}$
42. (c) Displacement of the particle will be zero because it comes back to its starting point

Average speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{30 \mathrm{~m}}{10 \mathrm{sec}}=3 \mathrm{~m} / \mathrm{s}$
43. (d) Velocity of particle $=\frac{\text { Total diplacement }}{\text { Total time }}$
$=\frac{\text { Diameter of circle }}{5}=\frac{2 \times 10}{5}=4 \mathrm{~m} / \mathrm{s}$
44. (d) A man walks from his home to market with a speed of $5 \mathrm{~km} / \mathrm{h}$. Distance $=2.5 \mathrm{~km}$ and time $=\frac{d}{v}=\frac{2.5}{5}=\frac{1}{2} h r$.
and he returns back with speed of $7.5 \mathrm{~km} / \mathrm{h}$ in rest of time of 10 minutes.
Distance $=7.5 \times \frac{10}{60}=1.25 \mathrm{~km}$
So, Average speed $=\frac{\text { Total distance }}{\text { Total time }}$
$=\frac{(2.5+1.25) \mathrm{km}}{(40 / 60) \mathrm{hr}}=\frac{45}{8} \mathrm{~km} / \mathrm{hr}$.
45.
(b) $\frac{\mid \text { Average velocity } \mid}{\mid \text { Average speed } \mid}=\frac{\mid \text { displacement } \mid}{\mid \text { distance } \mid} \leq 1$
because displacement will either be equal or less than distance. It can never be greater than distance.

[CHEMISTRY]

46. $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}(\text { KE Joules })}}=\frac{6.626 \times 10^{-34}}{\sqrt{2 \times 1 \times 0.5}}=6.626 \times 10^{-34} \mathrm{~m}$
47. $\Delta \mathrm{V}=\frac{\Delta \mathrm{P}}{\mathrm{m}}=\frac{1 \times 10^{-18} \mathrm{gcms}^{-1}}{9 \times 10^{-28} \mathrm{~g}}=1 \times 10^{9} \mathrm{~cm} \mathrm{~s}^{-1}$
48. $\quad \frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}=\frac{\frac{1}{4}}{\frac{1}{1}} \Rightarrow \quad \mathrm{E}_{2}=-\frac{13.6 \mathrm{eV}}{4}=-3.4 \mathrm{eV}$

Excitation energy $=-3.4-(-13.6)=10.2 \mathrm{eV}$
49. Density of nucleus is $1.685 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$ in all caes. So, the ratio of densities of two nuclei will be $1: 1$
50. $\Delta \mathrm{x}=\Delta \mathrm{P} \Rightarrow(\Delta \mathrm{P})^{2}=\frac{\mathrm{h}}{4 \pi} \Rightarrow \Delta \mathrm{P}=\frac{1}{2} \sqrt{\frac{\mathrm{~h}}{\pi}}$
$\Delta V=\frac{\Delta P}{m}=\frac{1}{2 m} \sqrt{\frac{h}{\pi}}$
51. $\frac{\Delta x_{A} \cdot m_{A} \Delta_{A}}{\Delta_{x_{B}} \cdot m_{B} \Delta v_{B}}=1$

$$
\frac{\Delta \mathrm{x}_{\mathrm{A}}}{\Delta \mathrm{x}_{\mathrm{B}}}=\frac{\mathrm{m}_{\mathrm{B}} \Delta \mathrm{v}_{\mathrm{B}}}{\mathrm{~m}_{\mathrm{A}} \Delta \mathrm{v}_{\mathrm{A}}}=\frac{5}{1} \times \frac{0.02}{0.05}=2
$$

52
KE per atom $=\frac{\left(4.4 \times 10^{-19}\right)-\left(4.0 \times 10^{-19}\right)}{2}=2.0 \times 10^{-20} \mathrm{~J}$
53. $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\frac{\mathrm{hc}}{\lambda_{1}}}{\frac{\mathrm{hc}}{\lambda_{2}}}=\frac{\lambda_{2}}{\lambda_{1}}$
$\Rightarrow \quad \frac{\lambda_{2}}{\lambda_{1}}=\frac{25}{50} \quad \Rightarrow \quad \lambda_{1}=2 \lambda_{2}$
54. Order of difference of energy $E_{2}-E_{1}>E_{3}-E_{2}>E_{4}-E_{3}>\ldots$

So, $E_{6}-E_{1}>E_{5}-E_{3}>E_{5}-E_{4}>E_{6}-E_{5}$
55. $\Delta v=\frac{0.001}{100} \times 300=3 \times 10^{-3} \mathrm{~ms}^{-1}$
$\Delta v=\frac{h}{4 \pi \mathrm{~m} \Delta \mathrm{v}}=\frac{6.6 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}}{4 \times 3.14 \times\left(9.1 \times 10^{-31} \mathrm{~kg}\right) \times\left(3 \times 10^{-3} \mathrm{~ms}^{-1}\right)}$
$=\frac{6.6}{4 \times 3.14 \times 9.1 \times 3} \mathrm{~m}=0.01925 \mathrm{~m}$
$=1.925 \times 10^{-2} \mathrm{~m}$
56. All have isotopic number $=1$
57. $\overline{\mathrm{v}}=\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)=\frac{\mathrm{R}}{4}$
$\lambda=\frac{4}{R}=4 \times 9.11 \times 10^{-8} \mathrm{~m}=4 \times 9.11 \times 100 \times 10^{-10} \mathrm{~m}=3644 \AA \AA$
58. $\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$, for the first spectral line
$=\mathrm{R}\left(\frac{1}{4}-\frac{1}{9}\right)=\mathrm{R} \times \frac{5}{36} \mathrm{~cm}^{-1}$
$\lambda=\frac{36}{5 R} \mathrm{~cm}$
59. $\frac{m_{A}}{m_{B}}=\frac{1}{4}$
$\frac{\lambda_{A}}{\lambda_{B}}=\frac{\left(\frac{\mathrm{h}}{\mathrm{mv}}\right)_{\mathrm{A}}}{\left(\frac{\mathrm{h}}{\mathrm{mv}}\right)_{\mathrm{B}}}=\frac{\mathrm{m}_{\mathrm{B}}}{\mathrm{m}_{\mathrm{A}}}=4$
$\lambda_{A}: \lambda_{B}=4: 1$
60. $\lambda=\frac{\mathrm{h}}{\mathrm{mv}} ; \mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2} \quad \Rightarrow \quad \mathrm{KE}=\frac{\mathrm{h}^{2}}{2 \mathrm{~m} \lambda^{2}}$

For h and λ being constant, $K E \propto \frac{1}{m}$
61. No. of spectral lines $\Sigma \Delta \mathrm{n}=\Sigma(6-3) \mathrm{S} 3=3+2+1==6$. There is no line in Balmer series as the electron comes to $3 r$ shell.
62. $E_{n}=\frac{E_{1}}{n^{2}} \Rightarrow E_{1}=2^{2} \times(-328)=-4 \times 328 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Energy of 3rd shell, $E_{3}=\frac{E_{1}}{9}=-\frac{4 \times 328}{9}$
$=-145.78 \mathrm{~kJ} \mathrm{~mol}^{-1}$
63. $E=1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mathrm{E}=\mathrm{hv}=\frac{\mathrm{hc}}{\lambda} \quad \Rightarrow \quad \lambda=\frac{\mathrm{hc}}{\mathrm{E}}$
$\lambda=\frac{6.6 \times 10^{-34} \mathrm{Js} \times 3 \times 10^{8} \mathrm{~ms}^{-1}}{1.6 \times 10^{-19} \mathrm{~J}}=12.375 \times 10^{-7} \mathrm{~m}=12375 \AA$
64. $\quad \mathrm{h}$ and mvr have same units $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$.
65. $\frac{\text { Ionisation energy of } \mathrm{Li}^{2+}}{\text { lonisation energy of } \mathrm{Be}^{3+}}=\frac{\text { lonisation energy of } \mathrm{H}-\text { atom } \times(3)^{2}}{\text { lonisation energy of } \mathrm{H}-\text { atom } \times(4)^{2}}=\frac{9}{16}$
66.
67. No. of revolutions of electron in nth shell in 1 second $=\frac{6.66 \times 10^{15} \times Z^{2}}{n^{3}}$
$=\frac{6.66 \times 10^{15} \times 4}{8}$
$=3.33 \times 10^{15}$
68. New energy $=-13.6+12.1=-1.5 \mathrm{eV}$
$E_{n}=\frac{-13.6}{n^{2}} \quad \Rightarrow n^{2}=\frac{-13.6}{-1.5}=9 \quad \Rightarrow \quad n=3$
Number of spectral lines in Balmer series for $3 \rightarrow 2$ transition would be one only
69.
70. $\quad v=3.29 \times 10^{15} Z^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right) \mathrm{s}^{-1}=3.29 \times 10^{15} \times 1 \times\left(\frac{1}{1^{2}}-\frac{1}{4^{2}}\right) \mathrm{s}^{-1}$

$$
=3.29 \times 10^{15} \times \frac{15}{16} s^{-} \mathrm{K} \approx 3.08 \times 10^{15} \mathrm{~s}^{-1}
$$

71.
72. $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2} ; \mathrm{KE}=\mathrm{eV}$

$$
\frac{1}{2} \mathrm{mv}^{2}=\mathrm{eV} \quad \Rightarrow \mathrm{v}=\sqrt{\frac{2 \mathrm{eV}}{\mathrm{~m}}}
$$

73. $\frac{\mathrm{KE}_{1}}{\mathrm{KE}_{2}}=\frac{\mathrm{h}\left(\mathrm{v}_{1}-\mathrm{v}_{0}\right)}{\mathrm{h}\left(\mathrm{v}_{2}-\mathrm{v}_{0}\right)} ; \frac{\mathrm{KE}_{1}}{\mathrm{KE}}=\frac{1}{\mathrm{x}}$ (given)
$\Rightarrow \frac{v_{1}-v_{0}}{v_{2}-v_{0}}=\frac{1}{x} \quad \Rightarrow x v_{1}-x v_{0}=v_{2}-v_{0}$
$\Rightarrow \quad \mathrm{xv}_{1}-\mathrm{v}_{2}=\mathrm{xv}_{0}-\mathrm{v}_{0} \quad \Rightarrow \mathrm{v}_{0} \frac{\mathrm{xv}_{1}-\mathrm{v}_{2}}{\mathrm{x}-1}$
$\Rightarrow \quad \mathrm{xv}_{1}-\mathrm{v}_{2}=\mathrm{x} \mathrm{v}_{0}-\mathrm{v}_{0} \quad \Rightarrow \mathrm{v}_{0} \frac{\mathrm{xv}_{1}-\mathrm{v}_{2}}{\mathrm{x}-1}$
74. $n^{\text {th }}$ shell has n wavelengths, i.e., $n \lambda=2 \pi r_{3}$

$$
\begin{array}{ll}
\lambda & =\frac{2 \pi r^{3}}{n}=\frac{2 \pi}{3}\left(\frac{r_{1} \times 3^{2}}{Z}\right) \\
& =\frac{6 \pi r_{1}}{Z}
\end{array}
$$

75. Be has fully filled 2 s sub-shell $\left(2 s^{2}\right)$ and, therefore, show little tendency to accept an electron.
76. All have 18 electrons.
77. The element is p-block Its group $=10+$ no. of electrons in $4 s^{2} 4 p^{4}=10+6=16$ Its period is four
78. The given element belongs to third period whose atomic number is $=15$. Below this element in the periodic table should belong to $4^{\text {th }}$ period. Fourth period contains 18 elements. Thus atomic number of this element is $15+18=33$.
79. The electronic configuration of M is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}$
